SOURCE: W2 Energy Inc.

September 26, 2007 10:22 ET

W2 Energy Inc. to Contract N.D. Zelinsky Institute of Organic Chemistry to Develop New Catalyst

NEW YORK, NY--(Marketwire - September 26, 2007) - W2 Energy Inc. (PINKSHEETS: WWEN), a developer of green energy, is pleased to announce it will contract the N.D. Zelinsky Institute of Organic Chemistry to develop a catalyst formula, which provides effective conversion of nitrogen-rich syn-gas into fuel-range hydrocarbons.

Mr. Michael McLaren states, "To partner with such a prestigious organization such as N.D. Zelinsky Institute in the field of organic chemistry further enhances W2 Energy's credibility of becoming a world leader in the field of alternative hydrocarbon production. It has been my goal throughout this project to be able to produce a pure hydrocarbon stream in the simplest manner possible thus reducing both capital and operational costs of manufacturing these hydrocarbons using waste streams and bio-feedstock. The new catalyst will enable W2 Energy to produce high quality hydrocarbon streams from syn-gas that has been derived using atmosphere rather than oxygen as the reaction gas in the biomass plasma reactor (BPR). The catalyst will also be able to produce a superior hydrocarbon stream from a hydrogen-poor syn-gas typically in the 1H2:1CO ratio which will eliminate the need for added components in our system such as a water/gas shift reactor."

W2 Energy currently has approximately US$1.7B in production requests for their alternative hydrocarbon product.

About W2 Energy Inc.

W2 Energy Inc. is a growing, publicly traded company that develops renewable energy technologies and applies it to new generation power systems. Specifically, W2 Energy Inc.'s biomass-to-energy plants utilize state-of-the-art technologies to produce green energy -- both fuel (sulfur free diesel) and electricity -- at the most efficient cost in capital investment and production per/barrel, per/Megawatt.

The W2 Energy GAT reactor breaks down biomass or coal using the chemical energy stored in the biomass itself, the plasma acts as a high temperature catalyst. Unlike typical plasma reactors that utilize convection of the intense heat produced by the plasma, our GAT reactor can amazingly produce enough syn-gas (H2, CO) to feed a 10,000 barrel-per-day synthetic diesel plant and 100 Megawatt steam turbine with a mere 4 MW input. Since our unique process works in this manner most if not at all the CO2 produced by the process is converted into Carbon suboxides in the form of humic acid and is mixed within the ash to produce high-grade organic fertilizer. Therefore the process is completely C02 neutral even using coal or peat as base fuel.

About N.D. Zelinsky Institute of Organic Chemistry.

The Institute of Organic Chemistry of the Russian Academy of Sciences was founded on February 23, 1934, as result of a merge of the laboratories, which represented leading Russian scientific schools and were headed by Professors A.E. Favorsky, N.D. Zelinsky, V.N. Ipatev and A.E. Chichibabin. Apart from these research teams, laboratories of Professors N.Ya. Demyanov, M.A. Ilinsky and N.M. Kizhner, and a number of scientists working under supervision of Professor Pavel P. Shorygin joined the Institute at the earlier stage of its existence.

N.D. Zelinsky Institute of Organic Chemistry (ZIOC) ranks among the leaders of Russian science in the field of organic and bioorganic chemistry and organic catalysis. The following key areas of basic research are being successfully developed at the Institute:

--  in-depth study of the chemical bond nature, reactivity of organic and
    organoelement compounds, mechanisms and intermediates of chemical
    reactions;
--  development of new methods and routes of organic and organoelement
    synthesis;
--  research in chemistry of biologically active and natural compounds;
--  elucidation of general regularities of organic catalysis and
    mechanisms of catalytic reactions;
--  development of new methods of catalytic synthesis.
    

Since the late 1980s, the Institute has initiated researches in the area of mathematical chemistry and computer synthesis based on advanced information technologies.

At every stage of its history, ZIOC has been focusing on combining basic research activities with a search of practical solutions being top priority for this country. During World War II its scientists greatly contributed to improving the quality of aviation gasolines and preparing critical drugs urgently needed in military hospitals. Of other activities, noteworthy is the preparation of the carbinol adhesive (Nazarovs adhesive) and its use for the maintenance of armored vehicles. After the War, a lot of researches were aimed at the country's defense capacity build-up.

ZIOC was involved in the implementation of the Food and Energy Programs, a number of Federal Target Programs aiming at important S&T problems, such as a tie-up of chemistry and agriculture, environmental protection and design of new high performance catalysts, pharmaceuticals, scientific research devices, etc. (more than 100 various projects).

Since the 1990s, ZIOC RAS has been performing research in topical and priority areas, including those initiated by and funded through governmental S&T programs such as the Federal Target Program "Research and Development within the Priority Science and Technology Areas," Federal Target Program "Integration of Science and Higher Education in Russia," and under other R&D programs along with basic research programs of the Russian Academy of Sciences, RAS Division of Chemistry and Material Sciences, Moscow Program of Science and Technology Development, and so on.

In addition, the Institute participates in joint projects with scientists from Western Europe and the USA in the framework of the EU scientific programs (INTAS, Copernicus), American Civil Research and Development Foundation (CRDF) established for the independent states of the former USSR, Conversion Program of the International Science and Engineering Center, and other initiatives of different foundations and organizations.

A number of the ZIOC teams and individual scientists are winners of the competition-based selection of research programs and individual projects for funding in the framework of the Program for Governmental Support to RF Leading Scientific Schools (in 2004 -- eight research teams), competitions of the Russian Foundation for Basic Research (in 2004 -- forty two projects), and competitions for grants held by international scientific foundations, programs and organizations (altogether about 20 grants annually).

Safe Harbor for Forward-Looking Statements: Except for historical information contained herein, statements are forward-looking statements that are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements involve known and unknown risks and uncertainties, which may cause the company's actual results in the future periods to differ materially from forecasted projections. These risks and uncertainties include, among other things, energy market volatility, product demand, market competition, and risk inherent to the company's research and development operations.

Contact Information