SOURCE: Lux Research

Lux Research

March 09, 2017 07:30 ET

Li-ion Retains Cost Edge for Stationary Energy Storage

As the modern power grid demands more energy storage, Li-ion benefits from the scale of electric vehicle production, while flow batteries are competitive only for long durations, Lux Research says

BOSTON, MA--(Marketwired - March 09, 2017) - Providing stationary energy storage is vital to the stability of the power grid as renewables grow and demand rises, but cost has been a challenge. A new analysis from Lux Research shows that Li-ion batteries will dominate the stationary energy storage market, though current generation flow battery technology has an economic case for certain very large and long-duration applications.

"Li-ion has a lower levelized cost of storage (LCOS) at most durations and system sizes, but the amount of space required starts to drive up costs at larger scales," said Tim Grejtak, Lux Research Analyst and lead author of the report titled, "Future Costs of Stationary Energy Storage: Evaluating Li-ion and Flow Battery Cost Reductions and Application Fit."

"As a result, there's an opportunity for emerging flow battery technology, which can change this landscape by driving down costs," he added.

Lux Research analysts developed new battery cost models based on size, duration, architecture and chemistry, and compared Li-ion and flow battery costs across a large parameter space to determine thresholds where given energy storage technologies are less expensive. Among their findings:

  • Li-ion retains cost edge. Li-ion beats the most popular vanadium-based flow battery technology on LCOS due to higher round-trip efficiency (83% vs. 65%). Li-ion also dominates the application space from 75 kW to 100 MW, and from 15 minutes of storage to eight hours, with costs above $0.37/kWh.
  • New technology will change economics. New chemistries like Lockheed Martin's metal complex chemistry, planned to debut in 2018, could make flow batteries competitive versus Li-ion batteries in the highly competitive 4-hour duration market, driving down costs of energy storage and opening up new markets. Current technology won't get lower than $0.35/kWh.
  • Diversification is key as price falls. Application stacking and multiple value streams will gain importance as energy storage costs fall to about $0.30/kWh by 2036. The lower cost will mean no single application market can bring enough revenue to make energy storage economically compelling.

The report, titled "Future Costs of Stationary Energy Storage: Evaluating Li-ion and Flow Battery Cost Reductions and Application Fit," is part of the Lux Research Energy Storage Intelligence service.

About Lux Research

Lux Research provides strategic advice and ongoing intelligence for emerging technologies. Leaders in business, finance and government rely on us to help them make informed strategic decisions. Through our unique research approach focused on primary research and our extensive global network, we deliver insight, connections and competitive advantage to our clients. Visit for more information.

Image Available:

Contact Information