September 17, 2015 13:00 ET

University of Copenhagen Uses SGI Supercomputer to Decode How Mutations Rewire Cancer Cells

Two Landmark Findings to Be Published in the Premier Life and Biological Sciences Journal, Cell

MILPITAS, CA--(Marketwired - Sep 17, 2015) - SGI (NASDAQ: SGI), a global leader in high-performance solutions for compute, data analytics, and data management, announced that through the use of advanced genetic algorithms processed on a SGI® supercomputer, scientists at the Linding Lab within the Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), have discovered how genetic diseases such as cancer systematically attack the networks controlling human cells.

By developing advanced algorithms to integrate data from quantitative mass-spectrometry and next generation sequencing of tumor samples, the UCPH researchers have been able to uncover cancer related changes to phospho-signaling networks at a global scale. The studies are some of the early results of the strategic collaboration between SGI and the Linding Lab at UCPH. The landmark findings have been published in two back-to-back papers in today's Cell journal.

Since the human genome was sequenced more than a decade ago, cancer genomics studies have dominated the life sciences worldwide and have been extremely successful at identifying mutations in individual patients and tumors. However, using this knowledge to develop improved cancer therapies has been severely hampered by the inability of researchers to explain and relate this data to proteins: the targets of most pharmaceutical drugs.

Using the SGI® UV™ server platform and Intel® Xeon® processors, researchers from the Universities of Copenhagen, Yale, Zurich, Rome, and Tottori (Japan) have unraveled how mutations such as those acquired in cancer, target and damage the protein signaling networks within human cells on an unprecedented scale.

"This new breakthrough allows researchers to identify the effects of mutations on the function of proteins in cancer for individual patients, even if those mutations are very rare," said Professor Dr. Rune Linding, lead researcher on the projects from the Biotech Research & Innovation Centre, UCPH. "The identification of distinct changes within our tissues that help predict and treat cancer is a major step forward and we are confident it can aid in the development of novel therapies and screening techniques. In these studies we simulated more than 2.5 million different computer models to find the optimal parameters to interpret cancer genomes. This is a vast computational and big data challenge that requires an extreme degree of computational flexibility."

The studies highlight the importance of big data in cancer biology and underpin the essentiality of large dynamic-range computing platforms such as the SGI UV. SGI's UV server platform offers unique capabilities for research computing, well beyond what is commonly possible with commodity computing hardware. The SGI UV line combines industry-leading shared-memory designs with unmatched data performance capabilities, making it the ideal choice for big data research workflows. 

"There is going to be more and more data available to us, and as scientists trying to lower the cancer burden, technology like SGI's UV system can make sense of all this data. This technology is a real game changer and these findings are a significant discovery from life sciences using a supercomputer, which we hope will make a difference for cancer patients world-wide," continued Linding.

The interpretation of these big datasets requires more advanced modeling frameworks than traditional bioinformatics approaches. In particular, models need to account for the inherent variability and heterogeneity of biological data, which can only be achieved in a rigorous manner by probabilistic Bayesian methodologies. As these methods in turn are much more computationally demanding, technologies like the SGI UV system are becoming mandatory to support scientific analysis and creativity, and to advance our understanding of, and ability to treat, complex diseases such as cancer.

"Thanks to the power of the technology in our supercomputers, SGI supports a broad range of fascinating and history-making research projects that will leave a strong mark in the life sciences and on the medical science community," said Jorge Titinger, president and CEO, SGI. "We are honored to be a part of such a monumental research program and are looking forward to continuing to provide the computing power the Linding Lab requires to dive deeper into understanding cancer through genomic research." 

The two studies are available today in an advanced online publication and will be printed in the September 24th issue of Cell. More information about the studies and links to media content can be found on and The work was supported by the European Research Council (ERC), the Lundbeck Foundation and Human Frontier Science Program.

More information on the SGI UV platform is available at

Creixell et al. Unmasking Determinants of Specificity in the Human Kinome. DOI:10.1016/j.cell.2015.08.057
Creixell et al. Kinome-wide Decoding of Network Attacking Mutations Rewiring Cancer. DOI:10.1016/j.cell.2015.08.056

About the Research Organizations
The Biotech Research & Innovation Centre (BRIC) was established in 2003 by the Danish Ministry of Science, Technology and Innovation to form an elite centre in biomedical research.

About SGI
SGI is a global leader in high performance solutions for compute, data analytics and data management that enable customers to accelerate time to discovery, innovation, and profitability. Visit ( for more information.

Connect with SGI on Twitter (@sgi_corp), YouTube (, Facebook ( and LinkedIn (

© 2015 Silicon Graphics International Corp. All rights reserved. SGI, the SGI logo and SGI UV are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. Intel and Xeon are trademarks or registered trademarks of Intel Corporation. All other product and service names mentioned are the trademarks of their respective companies.

Contact Information